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The first attempt at simplification of the Navier-Stokes equations for
describing two-cimensional steady transonic flows of a perfect gas (*) is
evidently attributable to Liepmann, Ashkenas and Cole (see, for example,[1]).
The asymptotlic equations obtained by them were derived by other njthods in
papers by Sternberg [2], Sichel [3 and 4] and Szaniawski [5 and 5. More-
over, these papers mentioned several examples of flows with velocities close
to the speed of sound, on the structure of which viscosity and heat conduc-
tion can exert a substatial influence. Relying on the Liepmann-Ashkenas-
Cole equation, the author together with Snefter showed [7) that the asymp-
totic pattern of flow past bodles of revolution of a stream of viscous,
heat-conducting gas which 1s sonic at infinity, must differ qualitatively
from that which i8 given by the solution of the equatlons of an ideal gas
[8 to 10]. This conclusion is obtained unexpectedly, since for an incom-
pressible fluld the behavlor of the solutions of the equatlions of Euler and
Navier-Stokes are in the first approximation identical, if they are con-
sldered at points located outside the vortex trail and sufficlently far
removed from the immersed body.

In the present paper is derived a detailed analysis of the Navilier-Stokes
equations under the assumption that the particle velocity of the gas 1s close
to the speed of sound in the entire region of flow. Besides the nonlinear
equation of Liepmann-Ashkenas-Cole, we derive the much simpler linear equa-
tion which is valid if the fleld of flow is determined on the basis of vis-
cosity and heat conduction. Thls equation is then applied to the study of
the asymptotic laws of decay of disturbances with distance from the body of
revolution immersed in a stream which 1s sonic at infinity. It is estab-
lished that the width ! of the zone in which the values of the gas para-
meters differ appreclably from the corresponding values in the free stream
is proportional to ,Y. , where 7~ 48 the distance from the axis of symmetry.
The difference between the local value of the Mach number ¥ and unity is
universely proportional to fh, and the angle { between the velocity vec-
tor and the direction of motion of the undisturbed stream is inversely pro-
portional to % As was shown by Guderley, Yoshihara and Barish [8 and 9],

*) The term "perfect” denotes a gas governed by Clapeyrons's equation of
state: the name "ideal” will relate to a gas devoild of viscosity and heat
conduction.
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Fal'kovich and Chernov [10], in the analogous problem with vanishing coefri-
clents of viscosity and heat conduction, !~ r M—1~r% and 9~ %
The presence of the dissipative factors leads £o the dlsappearance of the
shock wave and to a continuous character of the flow,

1, Derivation of the approximate oguations. Iet » and »r denote cylin-
drical space coordinates, v, and v, the components of the veloclty vector
along the x- and r-axes, p the density, p the pressure, & the speci-
fic entropy, I the temperature, A, the coefficlent of viscosity, i, the
second coefficient of viscosity, k the coefficient of heat conductivity.
Assuming the fleld of flow is symmeti?lc with respect to the x-axis, we take
the Navier-Stokes equations of continuity and heat transfer in the form [11]

pv
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In order to complete the system, we need to add two further equations
which relate the thermodynamic quantities p, P, & and T . 1In what follows
it is convenlent %o take for the independent parameters the density and
pressure, whilst the specific entropy and temperature are expressed in terms
of them. The increment of entropy

do= (G5l do+ (&), %0 = G5), (o =) (e=(57))

Here a4 1is the adiabatic veloclty of sound. We introduce also the spe~
cific heats at constant pressure o, and constant volume ¢, and the coeffi-
cient of thermal expansion o . Using the relations of reclprocity, we shall

[12]
e (35, = 2 ). = # ), w9
The temperature differential is
ar = (55,3 + (55), %0 = (55, [90 — () ]

Between the isothermal and adiabatic velocities of sound there exipts the
simple relation [12]
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It remains now to calculate the partial derivative (97 /[ dp),. For this

purpose we use the well-known formula from analysis

(55). (38): (), = —
Hence we find without difficulty that
T ® 1 /0p 7
(5;)9 = apa (“ =T (57‘)1:) (.7
Using Equations (1.5) to {1.7) for the increments of specific entropy and
temperature, we derive the relations

ds = “"B‘”‘a;{cvpaa (dp — a*dp), dT = —2— (xdp — a*dp) (1.8)

apa*

Equations (1.1) to (1.4), together with the relations (1.8) form a com=
plete system. In the analysis of it we make the assumptlon that the values
of all the gas parameters in the region of space under consideration differ
only slightly from the corresponding values in the free stream. We shall
assume that the undisturbed flow 1s uniform and steady, with the particle
veloclity equal in magnltude to the sound veloclty and directed along the
x-axis. The values of the gas parameters in the undisturbed state will be
distingulished by an asterisk, and the characteristic length in the direction
of the x-axis will be denoted by L . With regard to the perturbations of
denslty, pressure, temperature and sound veloclty, we shall assume that they
have the same order of smallness as the longitudinal component of the velo-
city vector. Passing to dimensionless variables, we write

L
" — ' ’ - ’
z = La, re=xr, ve=a, 1+ ev)), v,=cela,v,

p=p,(1+e), p=p,(A+ep), a=a,(l+ea)

Here ¢ and A are numerical parameters which are small in magnitude
compared with unity. As a result of substituting the relations {1.9) in the

system of equations {1.1) to {1.%) and (1.8) we obtain three dimensionless
coefficients

(1.9)

ayL a,L a.Le
[V'Re[ = p*}: , Npes = .P_’Exi‘i_ , Npe = Pe Z P
1 2

On the same principle, we shall assume that reciprocal values of these
numbers have the same order and are small compared with unity. In the deri~
vation of the approximate eguations in all relations we shall retain only
the main terms, neglecting terms having a higher order of smallness. Hence
in Equations (1.2) to {(1.%) the coefficients of viscosity Ai,, A, and of heat
conductivity % can be set constant and equal to thelr values in the free
stream. Concerning the choice of order of the transverse component of the
velocity vector in Formulas (1.9), this is justifiled as a result of the sub-
sequent analysis.
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After linearization of the equation of continulty we obtain (*
vy | 0n 00/ g =0

From the projection of the Navlzr-Stokes equatlion on the x-axls 1t follows

that .
0vy [0z + pyp,a, P 0p[ds =0
Integration of the two last equations gives Formulas
Pupsa P =p = — v, (1.10)

which express the fact that in the approximation under consideration the
compression of the gas is accomplished adiabatically and the integral of
Bernoulli is valid over the whole flow. This deduction 1s the direct result
of the assumptlion concerning the smallness of the derivation of the parame-
ters of the medium in the fileld of perturbations from the corresponding
quantities in the equilibrium state, and also the assumptlon concerning the
large values of the Reynolds number, compared with unity.

The postulated assumptlions lead further to Equation

ov dv

= (1.11)
following from the projection of the Navier-Stokes equation on the r-axis and
Formulas (1.10) and the postulated absence of vortices from the flow. Accord-
ingly, by simplification of the three first equations of the system (1.1) %o
(1.4) we obtain expressions characterizing the motion of ideal media. The
influence of dissipative factors must be taken into account in considering
the equations of heat transfer. It 1s necessary in the preliminary trans-
formation to exclude quantitles of the first order of smallness, related to
the transfer of mass and momentum of the material. Passing in Equation (1.4)
from entropy and temperature to pressure and density by means of Formulas
(1.8) and combining the expression so obtained with Equation (1.1) and (1.2},
we arrive at the required relation

a ap o i pY,
vx[(”xz’“az)gjz— rar]"f-v <57—‘ 25;>+vx (Urar+P r+ >
= —c; L1 (k7 M, 7\'2) — vl (7\'17 7\12) (1-12)
Here we denote by L, (%, X\;, A,) the right-hand side of Equation (1.}4),
and by ZL,{(A,, Az) the right-hand side of Equation (1.2) without the first

term. As is shown by Formulas (1.9), the difference v,?— a® 1is proportilonal
to the parameter ¢ . In the approximation under consideration

da = (%)s dp = (e ;*1) = dp (m* = TP;:—“F_ (%)S’ V= —li)_)

Using the latter relations and substituting Pormulas (1.9) into Equation
(1.12), we obtain

2m evx"”x (% g o) N‘Re( + "N—P‘ s (1.13)

#)  Primes on dimensionless variables will now and henceforth be omitted.
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Equations (1.11) and (1.13) form a complete system, and moreover the ana-
lysis of the latter enables us to distingulsh the different cases which can
occur in the study of transonic flows of viscous heat conducting gas. The
ovarall Reynolds' number Ny, appearing in Equation (1.13) is related to the
so~called "longitudinal viscosity"

1 :é i 1

Nge 3 Npet ' NRe
and the Prandtl number ﬂfpr 1s simply the ratio of the Péclet number A{pe
to the Reynolds' number JVRE. The orders of the Péclet and Reynolds' numbers
are by assumption the same, so that the Prandtl number 1s of order unity.
We notice that the terms in Equation (1.4), related to the dissipation of
energy on account of viscous forces, do not iInfluence the expression on the
right-hand side of Equation (1.13).Let us proceed to the complete classifi-
cation of the flows,

1) Suppose that all the terms in Equation (1.13) have the same order
of magnitude. This case was apparently first considered by Liepmann, Ashkeras
and Cole [1], who in the simplification of the initial Navier-~Stokes equa-
tions tended to retain not only the basic terms related to the presence of
the dissipative factors, but also the main nonlinear term which is obtalned
in the theory of flow of an ideal gas.

2) If A? <€ ¢ ~ Ngel, then we have

v 1 x-—1 \0%
2m Y, X == _—-—(1 ..___._) X
Sl b vl Gy e

This equation describes, in particular, the structure of shock waves.

3) If A? ~ g whilst ANge! <€ &, then the effect of viscosity and
heat conduction can be neglected. Setting for simplicity 2m.e = A? we
arrive at Kérmdn's equation [13]

v 3 v
— oG GE =0 (1.14)

4) Finally, let A% ~ Nge!, whilst & <€ Ngel. In this case the
nonlinear term in Equation {(1.13) can be neglected in comparison with the
rest. Assuming that

e 1 x—1
ha A —NRe(i+ N?r )
we have otw, ov vp
SE A+ e+ =0 (1.15)

In so far as the relatlon (1.11) 1s the condition of existence of a velo~
city potential, i.e. a function o(x,”) whose differential dp = vidzx + vedr,
then Equation {1.15) can be put in the form

ey g 1 d¢
Po  Pe Ll g (1.16)

are r or
Equation (1.16) 1s of parabolic type. Up to now it has not been encoun-
tered elther in physical or in technical problems. Certain properties of

the plane analogy of this equation, in which the term 7 13¢/B?‘ does not
appear, were studied recently by Dezin {14 and 15]. The fundamental advan-
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tage of Equation (1.16) in comparison with the equation of Liepmann-Ashkenas-
Cole consists in its linearity. It can serve as a mathematical model for

the study of the motion of viscous, heat conducting gas with transonic velo-
cities, if the structure of the flow is governed fundamentally by the influ-
ence of the dissipative factors.

2. Streamline flow past a finite body. Let us consider the veloclty
field around a body with a circular cross sectlion, immersed in a stream which
18 sonic at infinity.

The asymptotic laws of decay of disturbances at great distances from the
body were studied by Guderley, Yoshihara and Barish [8 and 9], who in the
solution of the boundary value prbblem made use of numerical methods of
integration of ordinary differential equations. The exact solution of this
problem was gilven subsequently by Fal'kovich and Chernov [10]. The funda-
mental assumption, on which were based the results of papers [8 to 10], con-
sisted in that the gas was devold of viscosity and heat conductivity. However,
all media exlsting 1n reality can conduct heat, and viscous forces occur in
them.. As a rule, the influence of dissipative facters arises significantly
only in the boundary layer and in the vortex trail behind the body, and it
determines the structure of the shock waves. In calculation of the field of
flow far from the body it 1s usually assumed that the influence of viscosity
and heat conduction can be neglected. If the fluid 1s incompressible, then
Finn proved rigorously that at those points located outside the vortex trail
and sufficlently far from the body the asymptotic solutions of Euler's equa-
tions serve simultaneously as asymptotic solutions of the Navier-Stokes equa-
tions. The structure of the wake in the first approximation is correctly
determined by the'linearized equations of Prandtl for the boundary layer (¥).

In a Jjoint paper the author and Shefter showed that in the study of the
asymptotlc laws of decay of disturbances caused by & finite body of revolu-
tion in a stream which 1s sonic at infinity, the influence of viscosity and
heat conductivity cannot be neglected [7]. On substituting the solution
found in the papers [8 to 10] into Equation (1.13), the term standing in its
right-hand side turns out to be greater in magnitude than the terms on the
left~hand side, 1if the values of the coordinate r tend to infinity. Accord-
ingly, for correct determination of the laws of decay of disturbances in a
real gas it is necessary to make use, not of Kdrmén system of equations
(1.11),(1.14), but of the system of equations (1.11),(1.15) derived above,
or of the third order equation (1.16).

In the following investigation the system of equations for the flow velo-
city components with respect to the coordinates turns out to be more conveni-
ent than the potential equation.

It is not difficult to verify that the system of equations (1.11), (1.15)
is invariant with respect to the continuous two-parameter group of similar-
ity transformations

T —> AL re as/zr, I q—3n/217x’ v, —> a—(3n+l)/2vr

Hence follows the existence of self-similar solutlions of 1t, having the

form ve = rf (E), v, = r-@n/3g (E), E = arh 2.1)

Making use of the solution (2.1) we find how the components of the velo-
city vector of the gas particles decrease wlth distance. The problem reduces,
evidently, to findlng the value of the parameter n for which the function
v, (x,r) vanishes along the whole r-axis with the exception of the origin of
coordinates x =7 = O . At infinitely distant points of the stream both

*) Finn's results are avallable in his review paper [16].
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components of the velocity vector must vanish, which leads to the requirement

that n > 0 . The results of [7] show that actually the inequality n> A
should be satisfled.

The substitutlon of Formulas (2.1) into the initial system (1.11), (1.15)
gives
?Sdg+ﬁ?‘_”f’ T ahe T '3‘)5' (2.2)
Eliminating from Equations (2.2) the function ¢(g) , we obtain for f(&)
an ordinary differential equation of the third order

d3f 4 d2f df —
TRt T ( . )g +n2f =0 (2.3)
after the solutlion of which the quantity g(g) is found by means of Equation
3 df 4 oq df 2
6=z (g T 5 Ea + 58 (2.4)

When r - 0 , the value of the self-similar coordinate £ in absolute
magnitude Increases without limit. Let us write down the asymptotic expan-
slons for three linearly independent solutions of Equation ¢2.3) when |£|-ew.

The first of them is

F=a|E (L +2n(n+2/a)(n+ )+ .. .] (2.9)
The second of the required solutions we shall take in the form
f=a 8| In|t|+... (2.6)
whilst the third linearly independent solution of Equation (2.3) we shall
ite as -
e f=as| " exp (— 40 )+ . .. (2.7)

Using Equations (2.1) and (2.4) 1t is easy io see that the asymptotic
expansions corresponding to Formula (2.5) for the functions v, (x,”) and
v, (x,7) , as r - 0 , start with the terms

Uy = allxl-sn/2+ DR ) Uy = —9/8n(n+ 2/8)(11].%]_(31”4)/21'—{— R

The longitudinal component of the perturbation velocity of the stream,
calculated according to the solution (2.6), tends to infinity llke 1nr,
whilst the transverse component tends 1ike 1/r . As to the solution (2.7),
it gives expressions for both components of the gas particle velocity which
contain the common factor exp(— 4x®/2772). Therefore, the use of solution
(2.7) with negative values of x turns out to be impossible, whilst on the
other hand, with positive values of x the corresponding disturbances decay
very quickly close to the axls of symmetry.

The results obtalned make it possible to formulate the problem on the
elgenvalues for the ordinary linear differential equation (2.3): it 1is
required to find the value of the parameter »n for which the integral of
this equation is defined by the expansion (2.5) when ¢ ~ —= , and satisfles

the condition 3n-—2
SB[ g (B) 0 (2.8)
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if € -~ + e . The condition (2.8) is equivalent to the requirement that the
constant ¢, in expansion (2.6) should vanish.

The first eigenvalue n 1s equal to */, . Simple verification serves
to confirm this assertion. In this case the second of the initlal equations

2.2) int t t 1
( ) integrates to give df s = Eg 1+ b

The constant b must be set equal to zero in order to satisfy the condi-~
tion (2.8). For the function [(£) we obtain

dzf { 4 3 lf 8
E g+ (_9_ _-1) ;’ + 5 &/=0 (2.9)

From thls differential equation by differentiation we obtein {(2.3). The
asymptotlic expansion for the first linearly independent solution of the sti-
pulated equation when J|g| - = 1s given by Formula (2.5), and for the second
by Formula (2.7). Since the logarithmic terms in the asymptotic expansions
of both solutlons are absent, the equation »n = ‘/; actually makes it pos-
sible to obtain the solution of the boundary value problem formulated above.
In order to find the exact expression for the
fg /”\ first eilgenfunction we effect the substitution

0.8 of the independent variable n = —*/,F® in
Equation (2.9), as a result we have

2 d 2
7 df+< ) g 240 (210
dn2 dn 3
2¢ \N\
The equation obtained represents in canoni-
cal form the so-called confluent hypergeometric

for the confluent hypergeometric functions, we

W{ obtain for the general solution

F=e1®@ (s s M)+ e @ (Y5, *fay m)  (2.11)

- J

/ T \\. equation [17]. Using the standard notation
f'

\ / It remains to find the relation between the
- constants ¢, and o, . For thls purpose we
Fig. 1 use the asymptotic representation of the hyper-

geometric functions n - + » . We have [17]

1/, 1 1 . r (1/8 (5/3)
f:: ’n/le'ﬂG<-——3—, T T]) [P(’/s) 1+ P(‘/) :|+ .
where I denotes Euler's gamma function, whilst G (— /5, 1/ 1) 1s a

series in inverse powers of n , and G (— Y4, Yy n) — 1 as n - += .
In order to obtain the solution tending to zero at infinity it 1is necessary

to set a __ r(l/s>r(4/s) _ _I2(p)
@ T T TCeRTER T 2R

Now Formula (2.11) is transformed into the form

jmafo(d, Lon) - S e (d, )] e
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The linear combination of hypergeometric functions included in square
brackets 1s proportional to the so-called y-function [17], hence when
n—-+« and € - — = we deduce that

=3 }—,E;'/—S;cln‘% + ... = _127_1‘_(’/3)_ 8., (2.13)
A3 2y 2 T (Ys)
Making use of the asymptotic expansion of the hypergeometric functions
for large negative values of the argument [17], we find for the solution
(2.12) when n - —=. and € - + =

_ 2 D0,y | N ) B T 2.14
/= 3 T (23/s) e 4L g/ff(z/s) 3 ( )

A graph of the function f(g), describing the variation of the gas parti-
cle velocity;along a streamline, is shown in Pig.l. In the calculations we
used ¢, =~—2y/ 2I'(1/,)[27T'(¥/;)]". To the approximation under consideration
v~ M — 1, where N denotes the local Mach number, hence f (E) ~ r/s (M — 1).
Let us now introduce the angle U between the velocity vector and the x-~axis.
The function g(g)nv'rhﬂ, and its graph 1s also shown in Fig.l. 1In accordance
with Formulas (2.13) and (2.14), the function f(£) passes or.ce through zero
and has different signs when ¢ - —« and £ - + « , As to the function
g(e) , it also has different signs for large negative and positive values of
the argument, but whilst its maximum value is equal to 1.01 , 1ts minimum
value 1s equal to — 0.16 . The exact expression for ¢(€) can be found
with the help of the rule for differentiation of confluent hypergeometric

functions [17 A r2 () 4 2
s ' 5 2(1/s 4 2
g=2 Vzcl[ﬂ’ﬂ‘b (3.550) - srz(z/s)“’(s ' 3 ")] (2.15)

Let us compare the solutlion so constructed with the solution of the analo-
gous problem for flow of an ideal gas, which was studied by Guderley, Yoshi-
hara and Barish [8 dnd 9], Fal'kovich and Chernov [103. As seen from Pig.1
and Formulas (2.1), the width ! , of the zone where the values of the gas
parameters differ appreclably from their values in the free stream, 1s pro-
portional to ,*s The difference between the local Mach number ¥ and unity
is 3nversely proportional to ;h, whilst the angle ¢ between the velocity
vector and the axis of symmetry of the flow is inversely proportional to %,
1f, however, the coefficlents of viscosity and thermal conductivity are equal
to zero, then from the solution of Kirmin's equations (1.11) and (1.14) it
follows [8 to 10] that [~ r""y M — 1 ~ r'/» and O ~ '/, Accordingly, the
influence of the dissipative factors has as a consequence the substantial
blur of the region where the disturbances are concentrated and the more
rapid decay of all the parameters with increasing distance from the body.

The motion of a real gas 1is obtalned without a shock wave, and it has a
continuous character, L

3. The prodlem of semi~infinite bodies. The solution constructed has an
obvious interpretation, namely, it represents perturbations introduced into
a stream of ideal gas which 1s sonic at infinity by a source placed at the
origin of coordinates. As 1s well known, in exactly the same way one can
interpret the solution describing the flow past a finite body of revolution
in a stream of incompressible fluid {11]. In order to be convinced of this,
let us write the expression for the flow rate (¢ of the gas flowing across
a cylindrical control surface of radius L7/A

—+oo -+eco
Q = 2ntep,a,L?r S v dz = 2nep,a,L? S g (£) d§ = const
—Co —Q

for arbitrary values of 7 ., From the shape of the graph of the function
g(g) it is at once obvious that 0 # O . Accordingly, the solution con-
structed above automatically takes account of the formation of a vortex trail
behind the immersed body.



1194 0.8. Ryzhov

Now suppose that the flow 18 not past a finite body of revolution but a
semi-infinite body, the profile of which 18 given in dimensionless variables
by Equation

k
R=ctra (1), 2>0 (3.1)

For the walls of this body we can take, in particular, the external sur-
face of the boundary layer or of the vortex trail. Meking use of Formulas
(1.9) and omitting, as usual, primes from the dimensionless variables, let
us present the boundary conditior. on the body under consideration in the form

2k-1 for ro { (3.2)

It 1s not difficult to verify that the postulated problem 1s self-similar
and ite solutlon 1s given by Formulas (2.1), but the condition (3.2) can be
satisfied onlf if we use the integral {2.6) of Equation (2.3), according to which
near the axlis of symmetry 4a

o X2 ~(3n-2)2 .-y
v,__3(3n_‘2)w St I S (3.3)

Comparison of Formulas (3.2) and (3.3) gives the relatlion between the

exponents n and i
R = -~ 4/3 (k —_— 1)

Hence 1t follows that when % = O the exponent of self-similarity n ~ﬁ4 .
The result obtalined is natural since when % = 0 the problem of flow past a
semi-infinite body defined by Equation {3.1) is eguivalent to the problem of
perturbation of a uniform stream by a source having a finite intensity.

As shown in [7], the influence of viscosity and heat conductivity can be
neglected if in the equation of the profile of the semi~infinite body
1/, < k< 1. Then the calculation of the flow must be conducted on the basis
of KArmAn's system of equations. When &k = % the effect of the dilssipative
factors need not be taken into account if the numerical value of the constant
A4 in Formula (3.1) 1s significantly greater than unity; conversely, when
A L1, the influence of viscosity and heat conduction becomes substantial.
The solution of the complete system of equations of Liepmann-Ashkenas-Cole
determines the field of the perturbations only when % = % &nd the values
of the constant A4 are not too different from unity. When 0O <Ck< 'y the
problem of the flow past a semi-infinite body must be solved on the basis of
Equations (1.11) and (1.15) derived by us, since in this case the structure
of the stream is affected fundamentally by the influence of viscosity and
heat conduction.

We notice that the small parameter ¢ 1n the relations (1.9) is intro-
duced by means of Equation (3.1), stipulating the shape of the immersed semi~
infinite body. When % = 0 and n = ‘/; , the parameter ¢ can be expressed
in terms of the intensity ¢ of the source modelling the finite body of
revolution together with the profile of its vortex trail. In the latter case
it i1s appreciably more convenient to relate the quantity ¢ with the drag
acting on the body in the sonic stream.

limryv,= kA%

The drag F, can be obtalned by calculating the component of momentum
along the x-axis, carrled away by the per-
turbations in unit time across the cylindri-
cal control surface of radius Lr/a . The
24ifg ] density of flux of the x~component of momen-
/’\/f\ . tum across the surface consldered can be

\ approximately represented in the form

/// f i 1 ,0v, Ov,

% \ f‘\ 7 I, == pya2Ll%A {"’r — N;;; (5; + E):} {3.4)
\ )l/// As 18 clear from Pormula {3.4), the irre-

versible transport of momentum from places
with higher to places with lower velocitles
g

is significantly smaller in magnltude than
revergible transport of momentum which 1is

\] related to the mechanical motion of gas par-
ticles. Neglecting in the right-hand side

Pig. 2 of Formula {3.4) the term proportional to
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VgL, we obtain +o0

F = 27epa,2L%r S v, da = a,Q
-~

The partial derivatives av,/ax and av,/ax satisfy the same system of
equations (1.11) and (1.15) as do the particle velocity components themselves.
Let us denote by vxn(x,r) and Vrnl(x,r) the general functions which have
the form (2.1) with’parameter n and depend on three arbitrary constants.
On differentiating Expressions (2.1) with respect to x we obtain functions
with the degree of similarity greater by 2/, than the original ones, 1.e.

— avx,n — avr,'n
anttls T T e ! Uity = oz

Thls remark can be made use of, 1n order to obtain the complete spectrum
of eigenvalues and the corresponding eigenfunctions in the boundary value
problem of finding a solution of Equation (2.3) such that when £ - —= 1t

1s given by the expansion (2.5), and when € -~ + = 1t satisfies the condi-
tion (2.8).

Obviously, the boundary conditions of the problem will be satisfied if

v

we take N 40 N_o
2 dv 1l d" gy
_ — 3 = 3 = ' 2, ... 3.5
n—~§(2+NL In Y y &n 2" (N=20,1,2 ) (3.9)

where /40 () means taking the integral (2.12) of Equation (2.3), containing
one arbifrary constant, and &%0(§) the corresponding function for (2.15).

As 1s shown by the first of Equations (3.5), the eigenvalue following
after */, 1s n = 2 . The corresponding eigenfunctions [f(z) and g¢g{e)
are depicted in Fig.2, where it was assumed that in the expansion (2.5) the
constant @,= — 1 . When the quantity n = 2 in Formulas (2.1), then the
fleld of veloclty obtalined 1s Just the same as for flow past a dlpole. In
fact, in thes case the moment

+00 +00
r S xvr de = S Eg () dE = const

for any value of the radius 7 . The last statement can be obtalned also
directly, by considering as an integral of the system of equations (1.11),
(1.15) the linear combination of the solutions which correspond to a source
and a sink, having equal intensity ¢@ and situated on the axis of r at a
distance x, from one another. Carrylng out the limiting transition as

Xo—» 0, Q ~ = and xo{ = const , we arrive at the solution (3.5) with ¥Ne= 1.
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