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The first attempt at slmpllficatlon of the Navler-Stokes equations for 
describing two-dimensional steady transonic flows of a perfect gas (*) Is 
evidently attributable to Llepmann, Ashkenas and Cole (see, for example,[l]). 
The asymptotic equations obtained by them were derived by other njthods In 
papers by Sternberg [23, Slchel [3 and 43 and Szanlawskl [5 and 5 . More- 
over, these papers mentioned several examples of flows with velocities close 
to the speed of sound, on the structure of which viscosity and heat conduc- 
tion can exert a substatlal Influence. Relying on the Llepmann-Ashkenas- 
Cole equation, the author together with Siiefter showed [7) that the asymp- 
totic pattern of flow past bodies of revolution of a stream of viscous, 
heat-conducting gas which Is sonic at Infinity, must differ qualitatively 
from that which Is given by the solution of the equations of an ideal gas 
C8 to 101. This conclusion Is obtained unexpectedly, since for an incom- 
pressible fluid the behavior of the solutions of the equations of Euler and 
Navler-Stokes are In the first approximation Identical, if they are con- 
sidered at points located outside the vortex trail and sufficiently far 
removed from the Immersed body. 

In the present paper Is derived a detailed analysis of the Navler-Stokes 
equatlona under the assumption that the particle velocity of the gas is close 
to the speed of sound In the entire region of flow. Besides the nonlinear 
equation of Liepmann-Ashkenas-Cole, we derive the much simpler linear equa- 
tion which la valid If the field of flow la determined on the basis of vls- 
coslty and heat conduction. This equation is then applied to the study of 
the asymptotic laws of decay of disturbances with dlatance from the body of 
revolution lnnnersed in a atream which Is sonic at Infinity. It Is estab- 
liehed that the width l of the zone In which the values of the gas para- 
meters differ appreciably from the corresponding values ln the free stream 
Is proportional to rva., where f la the distance from the axle of symmetry. 
The difference between the local value of the Mach number N and unity Is 
unlversely proportional to rvs, and the angle fJ between the velocity vec- 
tor and the direction of motion of the undisturbed stream Is Inversely pro- 
portional to r'/a. As wa8 shown by Guderley, Yoshihara and l%ri.¶h [8 and 91, 

*) The term "perfect" denotes a gas governed by Clapeyrons's equation of 
state: the name "Ideal" will relate to a gas devoid of viscosity and heat 
conduction. 

1185 



1186 O.S. Byzhov 

Fal’kovich and.Chernov ClO3, in the a~lo~ous oroblem with v~~~~~~ coe~;i- 
cienta of viscosity and heat conduction, I -+ I+‘!?~ M- 1 - r-*/* 
The presence of the d~%s~pat~ve factors leads to the disappearance of?$e” 
shock wave and to a continuous character of the flow. 

1. Derivslion of the 8-W WJuatfono. Let x and F denote cylln- 

drical space coordinates, v, and v, the components of the velocity vector 

along the Y- and r-axes, p the density, p the gressure, s the speci- 

fic entropy, T the tem~erat~e, ht the coefficient 6S viscosity, hz the 

second coefficient of vilscoeity, k the coefficient of heat ~onduc~~v~ty. 

Assuming the field of flow is s~et~~a with respect to the x-axis, we take 

the Navier-Stokes equations of continuity and heat transf’er in the form [11] 

Ln order to complete the system, we need to add two further equations 

which relate the thermod~lc qu%ntlties p, pt a and !F . In what follows 

it fs convenient to take for the independent parameters the density and 

pressure, whlfst the apeciflc entropy and temperature are expressed In terms 

of them. The fncrement of entropy 

Here u is the adiabatic velocity of sound. We introduce also the spe- 

cific heats at constant pressure CJ~ and constant volums ar and the coeffi- 

cient of thermal expansion Q . Using the relations of reciprocity, we shall 

have Cl23 

($J, = $ (%L - 4 rg,, (1.5) 

The temperature differential is 

Between the isothermal and adiabatic velocities of sound there exists the 

almple relation [X2] 



It remains now to calculate the partial derivative (aT / 8~)~. 

purpose we use the well-known formula from analysis 

(~),(-$),(%),=-1 

Hence we find without difficulty that 
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P.6) 
For this 

Using Equations (1.5) to (1.7) for 

temperature, we derive the relations 

the increments of specific entropy and 

ds = a$as (dp - a%>, dT = & (xdp - asdp) (W 

with the relations (1.8) form a com- Equations (1.1) to (1.41, together 

plete system. I$ the analysis of it we make the assumption that the values 

of all the gas parameters in the region of space under consideration dlf$'er 

only slfghtly from the corresponding values In the free stream. We shall 

assume that the Undisturbed flow is uniform and steady, with the particle 

velocity equal in magnitude to the sound velocity and directed along the 

x-axis. The values of the gas parameters in the undisturbed state will be 

d~st~~uished by an asterisk, and the eharacterlstlc length In the direction 

of the x-axis will be denoted by L . With regard to the perturbations of 

density, pressure, temperature and sound velocity, we shall assume that they 

have the same order of smallness as the longitudinal component of the velo- 

city vector. Passing to dimensionless variables, we write 

x = Lx’, r+, p,= a, (1 + EVA’), v, = eAasv,’ 

P = P* (1 -I- EP’), p = p* (1 -I- ep’), a = a, (I + en’) 

Here c and A are numerical parameters which are small itn magnitude 

compared with Unity. As a result of substituting the relations (1.9) in the 

system of equations (1.1) to (1.4) and (1.8) we obtain three dimensionless 

coefficients 
N Rot 

F+4*L =----, P*Q*L 
I1 

N&S = --ii-- , hTPe = .t!_f+P 

On the same principle, we shall assume that reciprocal values of these 

numbers have the same order and are small compared with unity. In the deri- 

vation of the approximate equations in all relations we shall retain only 

the main terms, neglecting terms having a higher order of smallness. Hence 

in Equations (1.2) to (1.4) the coeffZcients of viscosity X,, X, and of heat 

conductivity h can be set constant and equal to their values in the free 

stream. Concerning the choice of order of the transverse component of the 

velocity vector in Formulas (1.9), thLs is justified as a result of the sub- 

sequent analysis. 



After linearization of the equation of continuity we 

ih,.ih~i-C?(,/d~=o 

From the projection of the Navlsr-Stokes equation on 

that 
au, / f3x + p*p*-‘aL-2 8p / 8~ = 0 

Integration of the two last equations gives Formulas 

I-'dCa,-" p=p=--u, 

obtain (*) 

the X-xcls it follows 

(1.10) 

which express the fact that In the approximation under conslderatlon the 

compression of the gas Is accomplished adiabatically and the integral of 

Bernoulli Is valid over the whole flow. This deduction is the direct result 

of the assumption concerning the smallness of the derivation of the paramo- 

ters of the medium In the field of perturbations from the corresponding 

quantities In the equlllbrium state, and also 

large values of the Reynolds number, compared 

The postulated assumptions lead further to 

au, _ ar, 
ar ax 

the assumption concerning the 

with unity. 

Equation 

(1.11) 

following from the projection of the Navler-Stokes equationon the r-axis and 

Formulas (1.10) and the postulated absence of vortices from the flow. Accord- 

ingly, by slmpllflcatlon of the three first equations of the system (1.1) to 

(1.4) we obtain expressions characterizing the motion of Ideal media. The 

Influence of dissipative factors must be taken Into account in considering 

the equations of heat transfer. It Is necessary In the preliminary trans- 

formation to exclude qusntltles of the first order of smallness, related to 

the transfer of mass and momentum of the material. Passing In Equation (1.4) 

from entropy and temperature to pressure and density by means of Formulas 

(1.8) and combining the expression so obtained l*!lth Equation (1.1) and (1.2), 

we arrive at the required relation 

Here we denote by L, (k, X1, A,) the right-hand side of Equation (i.4), 

and by &(A,, 1s) the right-hand side of Equation (1.2) without the first 

term. As Is shown by PormuIas (1.9), the difference uXa- a2 Is proportional 

to the parameter e . In the approximation under consideration 

da= ee sdp= (m*;*i)u* dp 
( ) 

(n,= i 
2P*8a,a (g%)sP v=;, 

Using the latter relations and substituting Formulas (1.9) into Equation 

(1.121, we obtain 

2m,ev,~~-A2(~+~(j +-(I+ +$)z (1.13) 
r 

l ) Primes on dImensionless variables will now and henceforth be omitted. 
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Equations (1,11) and (1.13) form a complete system, and moreover the ana- 

lysis of the latter enables us to distinguish the different cases which can 

occur in the study of transonic flows of viscous heat conducting gas. The 

ov.erall Reynolds' number _@Re appearing in Equation (1.13) is related to the 

so-called "longitudinal viscosityfi 

I 41 
-_-_++-& 
NRe 3 NIkl 

and the Prandtl number Npr is simply the ratio of the PCclet number NPe 

to the Reynolds' number NRe, The orders of the Peclet and Reynolds' numbers 

are by assumption the same, so that the Prandtl number is of order unity. 

We notice that the terms in Equation (1.41, related to the dlsslpation of 

energy on account of viscous forces, do not influence the expression on the 

right-hand side of Equation (1_13).Let us proceed to the complete classif%- 

cation of the flows. 

1) Suppose that all the terms in Equation (1.13) have the same order 

of magnitude. This case was apparently first considered by Liepmann, Ashk~t~~ 

and Cole [l], wha in the simplification of the initial Navier-Stokes equa- 

tions tended to retain not only the basic terma related to the presence of 

the dissipative factors, but also the main nonllneax term which is obtained 

in the theory of flow of an ideal gas. 

2) If Aa 48 --Rem'* then we have 

This equation describes, in particular, the structure of shock waves, 

3) If ha -_e whAlst NRe-'d a, then the effect of viscosity and 

heat conduction can be neglected. Setting for sfmplicity 2??%,3 = A2,we 
arrive at K&n&n's equation 1133 

(1.14) 

4) Finally, let Aa NN~-~, whilst 8 <( N~e;-l. In this case the 
nonl:near term in Equation (L13j can be neglected in Comparison with the 

rest. Assuming that 

we have 
(1.15) 

In so far as the relation (1.11) Is the condition of existence of a velo- 

city potential, i.e. a functfon cp(x,f) whose differential llrp = V&X + v&r, 

then Equation (1.15) can be put in the form 

Equatfon (1.16) is of parabolic type. Up to now it has not been encoun- 
tered either in physical or in technical problems. Certain properties of 
the plane analogy of this equation, In which the term yliji&V does not 
appear, were studled recently by DezZn cl4 and 153+ he fundamental advan- 
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tage of Equation (1.16) in comparison with the equation of Liepmann-Ashkenas- 
Cole consists In its linearity. It can serve as a mathematical model for 
the study of the motion of viscous, 
cities, 

heat conducting gas with transonic velo- 
If the structure of the flow is governed fundamentally by the influ- 

ence of the dissipative factors. 

2. ltsrunllna flow part I flnltr body. Let us consider the velocity 

field around a body with a circular cross section, Immersed in a stream which 

Is sonic at Infinity. 

The asymptotic laws of decay of disturbances at great distances from the 
body were studied by Cuderley, Yoshihara and Harlsh C8 and 93, who in the 
solution of the boundary value prbblem made use of numerical methods of 
integration of ordinary differential equations. The exact solution of this 
problem was given subsequentI'y by Fal'kovlch and Chernov [lo]. The funda- 
mental assumption, on which were based the results of papers [8 to lo], con- 
sisted In that the gas was devoid of viscosity and heat conductivity. However, 
all media existing In reality can conduct heat, and viscous forces occur In 
them, As a rule, the Influence of dissipative factors arises significantly 
only In the boundary layer and In the vortex trail behind the body, and It 
determines the structure of the shock waves. In calculation of the field of 
flow far from the body It Is usually assumed that the Influence of viscosity 
and heat conduction can be neglected. If the fluid is Incompressible, then 
Finn proved rigorously that at those points located outside the vortex trail 
and eufflclently far from the body the asymptotic solutions of Euler's equa- 
tlone serve simultaneously as asymptotic solutions of the Navier-Stokes equa- 
tions. The structure of the wake In the first approximation Is correctly 
determlned by the,llnearlzed equations of Prandtl for the boundary layer (*). 

In a joint paper the author and Shefter showed that In the study of the 
aeymptotlc laws of decay of disturbances caused by a finite body of revolu- 
tion In a stream which Is sonic at infinity, 
heat conductivity cannot be neglected [n. 

the Influence of viscosity and 
On substituting the solution 

found In the papers C8 to 101 into Equation (1.13), the term standing In Its 
right-hand side turns out to be greater In magnitude than the terms on the 
left-hand aide, If the valuea of the coordinate r tend to Infinity. Accord- 
innl~. for correct determlnatlon of the laws of decav of disturbances In a 
real--as It Is necessary to make use not of K&n& '3 stem of equations 
(1.117,(1.14), but of the system of dquatlona 
or of the third order equation (1.16). 

(1.11),~1.15) derived above, 

In the following Investigation the system of equations for the flow velo- 
city components with respect to the coordinates turns out to be more convenl- 
ent than the potential equation. 

It Is not difficult to verify that the system of equations (l.ll), (1.15) 

Is Invariant with respect to the continuous two-parameter group of slmilar- 

lty transformations 

Hence follows the existence of self-similar solutions of it, having the 

form v, = r-(3n+1)/3 R (EL E L gy-Y3 P-1) 
Making use of the solution (2.1) we find how the components of the velo- 

city vector of the gas particles decrease with distance. The problem reduces, 

evidently, to finding the value of the parameter n for which the function 

v,(x,P) vanishes along the whole F-axis with the exception of the origin of 

coordinates x - r = 0 . At Infinitely distant points of the stream both 

*) Finn's results are available In his review paper [16]. 
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components of the velocity vector must vanish, which leads to the requirement 

that n > 0 . The results of [7] show that actually the inequality n> "/, 

should be satisfied. 

The substitution of Formulas (2.1) Into-the initial system (l.ll), (1.15) 

Ellmlnatlng from Equations (2.2) the function B(s) , we obtain for y(F) 

an ordinary differential equation of the third order 

after the solution of which the quantity Q(y) is found by means of Equation 

(2.4) 

When r - 0 , the value of the self-similar coordinate ? In absolute 

magnitude Increases without limit. Let us write down the asymptotic expan- 
sions for three linearly Independent solutions of Equation (2.3) when \rl-=. 

The first of them is 

f = allE j-3n'2[1 + 27/32n((n+ "/3)(n + 4/3)E-3 + . . .I 

The second of the required solutions we shall take In the form 

(2.5) 

WV 
whilst the third linearly independent solution of Equation (2.3) we shall 

write as 
f = a3 1 g p-1) exp (- 4/a7 E”) + . . . (2.7) 

Using Equations (2.1) and (2.4) It Is easy Lo see that the asymptotic 

expansions corresponding to Formula (2.5) for the functions u, (z,f) and 
V,(x,p) , as r - 0 , start with the terms 

vx= ull~~-3n’2+. . . , vr = - g/3n (n + 73) all 2 I 
-(3n+4)lZr + . . , 

The longitudinal component of the perturbation velocity of the stream, 

calculated according to the solution (2.6), 

whilst the transverse component tends like 

It gives expressions for both components of 

contain the common factor exp(- 49/27*). 
(2.7) with negative values of x turns out 

other hand, with positive values of x the 

very quickly close to the axis of symmetry. 

tends to infinity like lnr, 

1/r . As to the solution (2.7), 

the gas particle velocity which 

Therefore, the use of solution 

to be Impossible, whilst on the 

corresponding disturbances decay 

The results obtained make it possible to formulate the problem on the 

elgenvalues for the ordinary linear differential equation (2.3): it is 
required to find the value of the parameter n for which the Integral of 

this equation Is defined by the expansion (2.5) when 5 --m , and satisfies 
the condition 

?!$ IE yn-2)/2 g(~)_+O (2.8) 
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If t-r+=. The condition (2.8) Is equivalent to the requirement that the 

constant a, In expansion (2.6) should vanish. 

The first elgenvalue rl is equal to 4/3 . Simple verification serves 

to confirm this assertion. In this case the second of the lnltlal equations 

(2.2) Integrates to give 
df I dE == 2l3& + b 

The constant b must be set equal to zero in order to satisfy the condl- 

tion (2.8). For the function Y(5) we obtain 

From this differential equation by differentiation we obtain (2.3). The 

asymptotic expansion for the first linearly Independent solution of the stl- 

pulated equation when 151 - m is given by Formula (2.5), and for the second 

by Formula (2.7). Since the logarithmic terms In the asymptotic expansions 

of both solutions are absent, the equation n I '/, actually makes it pos- 

sible to obtain the solution of the boundary value problem formulated above. 

In order to find the exact expression for the 

first elgenfunctlon we effect the substitution 

of the Independent variable r( = - 4/o)t3 In 

Equation (2.9), as a result we have 

(2.10) 

The equation obtained represents in canoni- 
cal form the so-called confluent hypergeometrlc 

equation [17j. Using the standard notation 

for the confluent hypergeometric functions, we 

obtain for the general solution 

use the asymptotic representation of the hyper- 

geometric functions q - + = . We have cl71 

#=-qlWG(--$, $; ,)[~c,+~c~]+... 
where r denotes Euler's gamma function, whilst G (- V3, Vs; y) 1s a 
series In inverse powers of rl , and G (- 113, lia; q) + 1 as r, - + m . 
In order to obtain the solution tending to zero at inflnlty it is necessary 

to set 
Ca 
-=- 

r (l/a) r (*/a) = rawa) 

Cl r ma) r (31~) -arn(a/s) 

Now Formula (2.11) is transformed into the form 
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The linear combination of hypergeometrlc functions Included In square 

brackets is proportional to the so-called Y-function [17], hence when 

n-+m and r---m we deduce that 

f = 3 *cl,,-% + . . . = 27r P/3) cll;-a + . . . 

2,” -5 r (l/3) 

(2.13) 

Kaking use of the asymptotic expansion of the hypergeometrlc functions 

for large negative values of the argument [17], we find for the solution 

(2.12) when n - - - and { + + = 

f - 2 r F/3) 3r (l/3) 

3 1‘(2/3j- wf’~ + . . . = - 3 _ 

Ifa r P/s) 

cp . (2.14) 

A graph of the function f(t), describing the variation of the gas partl- 
cle velocltyssJong a streamline, Is shown In Flg.1. In the calculations we 
used cL=-2d2I’(‘/,) [27r(V,)]-1. To the approximation under consldera Ion 
uXWM--l , where 4 - N denotes the local Mach number, hence f(E)- r “(1?4 
Let us now Introduce the angle 6 

1). 
between the velocity vector and the X-~&S. 

The function g(t)--'r %, and Its graph Is also shown in Flg.1. In accordance 
with Formulas (2.13) and (2.14), the function y(5) passes once through zero 
and has different signs when < -. - 0~ As to the function 
B(S) 

and 5-+". 
it also has different signs for large negative and positive values of 

the a;gument, but whilst Its maximum value Is equal to 1.01 Its minimum 
value IS equal to - 0.16 . The exact expression for g(s) ian be found 
with the help of the rule for differentiation of confluent hypergeometrlc 
functions [ 17 

(2.15) 

Let us compare the solution so constructed with the solution of the analo- 
gous problem for flow of an Ideal gas, which was stud'ed by Quderley, Yoshl- 
hara and Barlsh c8 and 91, Fal'kovlch and Chernov [lo]. 
and Formulas (2.1), the width 1 , 

As seen from Pig.1 
of the zone where the values of the gas 

parameters differ appreciably from their values In the free stream, Is pro- 
portional to r'la. The difference between the local Mach number N and unity 
Is inversely proportional to r%, whilst the angle 6 between the velocity 
vector and the axis of symmetry of the flow Is Inversely proportional to;%. 
If, however, the coefficients of viscosity and thermal conductivity are equa 
to zero, then from the solution of K&&n's equations (1.11) and (1.14) It 
follows c8 to lo] that lry r'l~, M - 1 - ,-"I7 and 6 _ /I'. Accordingly, the 
Influence of the dissipative factors has as a consequence the substantial 
blur of the region where the disturbances are concentrated and the more 
rapid decay of all the parameters with Increasing distance from the body. 
The motion of a real gas Is obtained without a shock wave, and it has a 
continuous character. CtT 

3. Tha pro81Om oi romi-MMtr badlog. The solution constructed has an 
obvious Interpretation, namely, It represents perturbations Introduced into 
a stream of Ideal gas which is sonic at Infinity by a source placed at the 
origin of coordinates. As Is well known, In exactly the same way one can 
Interpret the solution describing the flow past a finite body of revolution 
In a stream of Incompressible fluid [ll]. In order to be convinced of this, 
let us write the expression for the flow rate 0 of the gas flowing across 
a cylindrical control surface of radius Lr/A 

+@J +a, 
Q = 25rep,a,L+ 

s 
v,dx = 2nep,a,La 

s 
g (4) df = const 

--co -co 

for arbitrary values of r . From the shape of the graph of the function 
g(s) It Is at once obvious that 0 # 0 . Accordingly, the solution con- 
structed above automatically takes account of the formation of a vortex trail 
behind the Immersed body. 
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Now suppose that the flow is not past a finite 
semi-infinite body, the profile of which la given 
by Equation 

body of revolution but a 
in dlmenslonless variables 

For the walls of this body we can take, In particular, the external BUP 
face of the boundary layer or of the vortex trail. Maklng use of Formulas 
(1.9) and omitting, as usual, primes from the dimensionless variables, let 
u8 present the boundary condition on the body under consideration in the form 

lim rt’,.= kAbzk-t for r + 0 (3.2) 
It Is not difficult to verify that the 

and its solution is given by Formulas (2.1 P 
ostulated problem is self-similar 
but the condition (3.2) can be 

aatlaflad 
"9 

ifwe use theintegral (2.6) of EqAtlon (2.3), according to which 
near the ax s of symmetry 

(3.3) 

Comparison of Formulas (3.2) and (3.3) gives the relation between the 
exponents n and k 

n = --% (k - 1) 

Hence it follows that when k - 0 the exponent of self-similarity n-% . 
The result obtained is natural since when k = 0 the problem of flow past a 
semi-infinite body defined by Equation (3.1) is equivalent to the problem of 
perturbation of a uniform stream by a source having a finite intensity. 

As shown In 173, the influence of viscosity and heat conductivity can be 
neglected If In the equation of the profile of the semi-infinite body 

2BrnJn1s system of equations 
k< 1.' Then the calculation of the flow must be conducted on the basis 

When k - a the effect of the dissipative 
factors need not be taken into account If the numerical value of the constant 
A in Formula (3.1) is significantly greater than unity; 
A.& 1, 

conversely, when 
the influence of viscosity and heat conduction becomes substantial. 

The solution of the complete system of equations of Llepmann-Ashkenas-Cole 
determines the field of the perturbations only when k 3 a and the values 
of the constant A are not too different from unity. When O< k<1/2 the 
Droblem of the flow Dast a semi-infinite bodv must be solved on the basis of 
kquatlons (1.11) ar~d~(1.15) derived by us, since In this case the structure 
of the stream Is affected fundamentally by the Influence of viscosity and 
heat conduction. 

We notice that the small parameter E In the relations (1.9) Is lntro- 
duced by means of Equation (3.1), stipulating the shape of the immersed seml- 
Infinite body. When k = 0 and n = "/= the parameter E can be expres& 
in terms of the intensity 0 of the sour& modelling the finite body of 
revolution together with the profile of Its vortex trail. In the latter case 
It is appreciably more convenient to relate the quantity E with the drag 
acting on the body in the sonic stream. 

The drag F, can be obtained by calculating the component of momentum 
along the x-axis, carried away by the per- 
turbations In unit time across the cyllndri- 
cal control surface of radius Lr/h . The 
density of flux of the x-component of momen- 
tum across the surface considered can be 
approximately represented in the form 

As Is clear from Pormula (3.4), the lrre- 
versible transport of momentum from places 
with higher to places with lower velocities 
Is slgnlflcantly smaller in magnitude than 
reversible transport of momentum which is 
related to the mechanical motion of gas par- 
ticle8. Ne letting In the right-hand side 
of Formula f 3.4) the term proportional to 



iv&,, we obtain 
+03 

s v,. dx = a*Q 

-m 

The partial derivatives av./ar and av,/ar satisfy the same system of 
equations (1.11) and (1.15) as do the particle velocity components themselws. 
Let us denote by vXn(x, r) and V,,p,T, 
the form (2.1) with'parameter n 

(2, r) the general functions which have 
and depend on three arbitrary constants. 

On differentiating Expressions (2.1) with respect to x we obtain functions 
with the degree of similarity greater by "/, than the original ones, i.e. 

This remark can be made use of, In order to obtain the complete spectrum 
of eigenvalues and the corresponding eigenfunctions in the boundary value 
problem of finding a solution of Equation (2.3) such that when F - - - it 
is given by the expansion (2.5), and when 5 - + = it satisfies the condi- 
tion (2.8). 

Obviously, the boundary conditions of the problem will be satisfied If 
we take 

d 
NO 

Q3 gn - 

dE” 

(N = 0, 1, 2, . . .) (3.5) 

where fd:,‘(E) means taking the integral (2.12) of Equation (2.3), containing 
one arbitrary constant, and g,,c(g) the corresponding function for (2.15). 

As is shown by the first of Equations (3.5), the elgenvalue following 
after '/, is n=2. The corresponding elgenfunctions Y(T) and g 5) 
are depicted In Flg.2, where it was assumed that In the expansion (2.5 the I 
constant a,=-1. When the quantity n I 2 In Formulas (2.1), then the 
field of velocity obtained is just the same as for flow past a dipole. In 
fact, in thes case the moment 

+cc -1.cc 

r 
s 

xc,. dx z 
s 

Eg (f,) dc = const 

-03 -co 

for any value of the radius r . The last statement can be obtained also 
directly, by considering as an integral of the system of equations (l.ll), 
(1.15) the linear combination of the solutions which correspond to a source 
and a sink, having equal intensity Q and situated on the axis of r at a 
distance xc from one another. Carrying out the limiting transition as 
xc- 0 , Q - = and xOQ = const , we arrive at the solution (3.5) with N-1. 
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